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ABSTRACT

A MATHEMATICAL MODEL OF ADHESION INTERACTIONS

BETWEEN LIVING CELLS

Casey Patrick Johnson

Department of Mathematics

Master of Science

This thesis presents a simple force-based model of moving and interacting cells that in-

corporates a realistic description of cell adhesion and applies it to a system of spherical

cells. In addition, several results in matrix theory are proved with the end of showing

that the equations produced by the model uniquely determine the motion of the system

or cells.
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1 Introduction

1.1 Mathematics and Biology

The histories of mathematics and physics are closely intertwined. Indeed, a good deal of

mathematics has been developed out of a desire to describe the earth and the heavens.

Consequently, physicists have access to powerful mathematical theories when studying

new phenomena. Even chemists have been able to take advantage of mathematics to

model and quantify reactions. Some branches of biology, on the other hand, have not

profited from the power of mathematics to the same extent.

Historically, a robust mathematical theory describing the behavior of biological sys-

tems has been impossible. To describe the behavior of a single cell is extremely compli-

cated. To extend such a description to simultaneously describe the behavior of thousands,

or even millions, of interacting cells is not only difficult in theory, but also very expensive

computationally. However, modern computing and improvements in measuring devices

have made it possible to produce and analyze various theories that describe biological

phenomena, including various models of cellular movement and interaction.

For several years, biologists have been able to experimentally measure even the in-

dividual forces between pairs of interacting cells. This precision has made it possible to

begin to mathematically describe biological systems at the cellular level. Such a mathe-

matical description of cellular biology is essential, for a mathematical understanding at

the cellular level will enable a more thorough study of macrobiological systems, such as

tissues and organisms.

1.2 Adhesion

One of the hurdles that must be overcome in order to produce an adequate theoretical

model for interacting cells is a more complete understanding of cell adhesion. Adhesion

is the process by which cells are able to attach to other cells, as well as the substrate, in

1
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order to move about.

A cell adheres to other objects via a family of specialized molecules, called integrins,

which are attached to the cytoskeleton and pass through the bilipid layer of the cell

membrane to lie mostly outside the cell. Integrins selectively attach to the substrate or

to integrins belonging to other cells in order to form bonds. The bonds formed may be

broken either by detaching the integrins from the attached object or by simply tearing

the integrins from the cytoskeleton itself, leaving them behind.

The movement of an amoeboid cell is highly dependent on its ability to adhere to

other objects. The motion of a cell toward a stimulus can be summarized in the following

steps, described in [8], which may be repeated until the cell arrives at its destination:

1. Morphological Polarization. Before any motion is to occur, the cell must adopt

an asymmetrical shape. This asymmetry may be manifest as a polarized mor-

phology. That is, the cell creates a distinction between “front” and “rear”. This

transition may arise due to the sensing of spatial or stimulus gradients, and is of-

ten accompanied by a “forward redistribution of chemosensory signaling receptors,

integrin adhesion receptors, and integrin-cytoskeleton linkages.”

2. Membrane Extension. The cell adheres to the substrate near the tail and a re-

gion of the “front” of the cell membrane extends toward the movement stimulus,

forming what is known, generally, as a pseudopod. This extension may be a lamel-

lipod (a broad, flat structure) or a filopod, which is a “thin, cylindrical, needle-like

projection.”

3. Formation and Stabilization of Attachments. With the pseudopod extended,

the cell forms adhesive attachments with nearby objects, such as other cells or the

substrate. These attachments tend to be preferred along the leading edge of the

pseudopod due to a forward redistribution of integrins.

4. Contractile Forces and Traction. Once attached, the cell retracts the pseudo-

2



www.manaraa.com

pod, pulling against the object to which it is attached, thus propelling the main

body of the cell forward.

5. Rear Release. As the cell moves forward, the adhesion bonds at the tail portion

of the membrane gradually detach, allowing the tail to rejoin the main body of the

cell. Experimental evidence shows that, in the case of fibroblasts, the majority of

adhesion bonds are broken simply by ripping the integrins from the cell membrane

and leaving them attached to the substrate. Integrins that remain concentrated at

the rear may now be redistributed or concentrated forward to prepare for future

adhesion bonds.

Throughout this process, it is essential that the strength of these adhesion bonds be

carefully regulated. In stages 3 and 4, if the adhesion bond is of inadequate strength, the

bond will simply break, leaving the cell unable to move, having nothing against which to

exert force. In stage 5, the force holding the cell to the substrate must not be too strong.

If adhesion receptors are over-expressed in the tail, the cell may require a great force to

break the bond, which may retard the movement of the cell.

Movement on the substrate is but one aspect of the motion of which a cell is capa-

ble. Of more interest is the way large populations of cells interact and move with one

another. When several cells selectively adhere to one another, the resulting system may

behave as a single tissue whose movements are determined by the motions of its con-

stituent cells relative to the fixed substrate, as well as relative to one another. How the

individual connections between cells combine to produce this tissue-like movement is not

well understood, and is therefore difficult to model mathematically.

In order to better understand the motive properties of amoeboid cells in general,

biologists have focused their attention on Dictyostelium discoideum (Dd), a simple cellular

slime mold that exhibits interesting motive behavior. Dd reacts to a nucleotide called

cyclic Adenosine monophosphate (cAMP). Left to its own devices, Dd extends pseudopods

3
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at random. In the presence of cAMP, however, Dd cells orient towards the source of the

cAMP pulse. They initially travel independently, but eventually form streams of cells

that move toward the cAMP stimulus. These streams of cells converge to a cigar-shaped

mass called a slug. This slug of cells is able to detect stimuli and propogate these signals

throughout. The cells are then able to respond in such a way that the result is concerted

effort to move the slug, rather than random motions of individual cells. The mechanisms

by which Dd cells adhere to one another and propogate stimulus signals continues to be

actively studied.

In addition to Dd, there are other systems in which cell migration is important. Many

cells, such as those found in embryonic tissues, move by a similar process. When many

cells move inward at the same time, they slide past one another and line up in an alter-

nating fashion, much like interlocking fingers. This process, called intercalation, results

in narrowing (convergence) and lengthening (extension) of the tissue as a whole. By this

mechanism, tissues are able to take the shape that is needed for appropriate embryonic

development.

There are also many other physical processes in which cell migration is integral, as

noted in [8]:

Cell migration plays a central role in a wide variety of biological phenom-

ena. In embryogenesis, cellular migrations are a recurring theme in important

morphogenic processes ranging from gastrulation to development of the ner-

vous system. Migration remains prominent in the adult organism, in normal

physiology as well as pathology. In the inflammatory response, for example,

leukocytes immigrate into areas of insult, where they mediate phagocytic and

immune functions. Migration of fibroblasts and vascular endothelial cells is

essential for wound healing. In metastasis, tumor cells migrate from the ini-

tial tumor mass into the circulatory system, which they subequently leave and

migrate into a new site. Finally, cell migration is crucial to technological ap-

4
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plications such as tissue engineering, playing an essential role in colonization

of biomaterials scaffolding.

Since adhesion plays such an important part in these processes, it seems natural to

study adhesion as a major component of cell motion. With this in mind, the intent of

this thesis is to present a simple force-based model of moving and interacting cells that

incorporates a realistic description of cell adhesion and applies it to a system of spherical

cells. Rather than focusing on the geometry of the model and using ad hoc methods of

treating adhesion, as is done in other models, we opt for a simple geometry so that we can

focus our attention on implementing adhesion in the way it ought to behave. This model

can be represented as a matrix equation where the velocities of the cells and the adhesion

forces are unknowns that can be determined based on the spatial locations of the cells

together with external forces acting on the system of cells. With the help of some matrix

theory, we prove that this equation uniquely determines the motion of the system, but

possibly not the adhesion forces.

5
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2 Physical Principles

2.1 Aristotelian vs. Newtonian Mechanics

For centuries, the governing authority in physics seems to have been Aristotle. While

time brought with it many advances in man’s understanding of the physical world, it was

not really until Newton that science was able to escape the mindset that had befuddled

it for so long. From [4] we see that, at least as concerns our work here, there are four

fundamental notions that distinguish the Aristotelian and Newtonian paradigms:

• The effect of force.

• The natural state of objects.

• Action at a distance.

• Infinite motion.

The Effect of Force

Aristotle believed that force was the sole cause of motion—that at a given moment an

object is in motion if and only if some sufficient force is acting on it at that moment. Thus,

the cause of acceleration is a change in the magnitude of the force causing the motion.

Aristotle calculated velocity by the formula

Velocity =
Force (Motive power)

Resistance
.

This theory brought with it some difficulties. It is not hard to find examples where

this simply doesn’t work. For example, force can be applied to an object resting on a

table without resulting in any sliding. For this reason, Archimedes stipulated that the

motive force must be greater than the resistance force in order to achieve motion. Another

6
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limitation to this formula is that it actually requires resistance to be nonzero, which makes

travel in a vacuum a rather perplexing notion—a topic of much debate over the centuries.

Some of the limitations of this theory are evident in the problem of projectile motion.

Under this theory, it is very difficult to explain the fact that the vertical motion of a

projectile slows down until it attains its apex, and then speeds up again as it descends.

The Newtonian view, however, is simpler. Rather than causing movement per se, force

causes change in motion. The problem of the object that resists sliding can be easily

explained through the notions of static and kinetic friction. The fact that a projectile

continues to move once it has left the hand of the thrower is due not to some mysterious

force left in the projectile by the thrower. Rather, it is due to the inertia imbued by the

thrower.

Natural State

Aristotle’s idea of an object’s natural state derives from his notion of its composition

as some mixture of the four elements: earth, fire, wind, and water. For example, earth

is believed to be absolutely heavy and, therefore, should fall to the center of the universe

(the center of the earth). Fire, considered absolutely light, should rise to its natural place

near the other extreme—a sphere within the lunar sphere. A mixture of fire and earth

either rises or falls based on which of the two elements is dominant.

Thus, a composition of fire and earth tends to be at rest—either as near to the center

of the universe as possible or as near to its natural sphere as possible, depending on which

element dominates the composition. Many attempts were made over the ensuing centuries

to explain this behavior.

Newton, on the other hand, was able to see past this idea. He understood that an

object’s natural tendency is not necessarily to be in any particular place, or even in any

particular type of motion. Rather, he theorized that its natural tendency is for its behavior

to remain unchanged—the principle of inertia. If in motion, it tended to maintain its

velocity unless acted on by some external force. In short, whereas Aristotelian mechanics

7
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favor lack of motion, Newtonian mechanics favor lack of acceleration.

Action at a distance

One of the underlying difficulties of Aristotelian mechanics was the idea that force

could not be applied except upon physical contact between two entities. Enormous efforts

were made during the Middle Ages to explain the motion of projectiles. Nobody could

explain why a projectile continued to move once it had left the hand of the thrower.

Avicenna (980-1037) wrote the following:

There are some who hold that the cause lies in the tendency of the air which

has been pushed to get behind the projectile and to unite there with a force

which presses against that which is in front of it. There are others who say

that the pusher pushes the air and the projectile together, but the air is more

receptive to pushing and so it is pushed more swiftly and thus pulls that which

has been placed in it. And there are those who hold that the cause is in that

force which the moved acquires from the mover and which persists in it for a

time until it is abolished by the opposing force of that which touches it and is

displaced by it. . . . But when we have verified the matter we have found the

most valid opinion to be that of those who hold that the moved received an

inclination from the mover. The inclination is that which is perceived by the

senses to be resisting a forceful effort to bring the natural motion to rest or to

change one violent motion into another.

Gravity, for example, was a great mystery to physicists before Newton. Even now,

the nature and cause of gravity is mysterious, but Newton and physicists since have been

much more successful at predicting its effects than Aristotle was.

Infinite motion

The idea that a projectile could continue to move forever without ever slowing down

was completely alien to Aristotelian physicists. In fact, many physical arguments (such

8
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as the possibility of motion in a vacuum) were rejected on the grounds that they would

result in infinite motion.

Newtonian mechanics, on the other hand, has no problems with infinite motion. In

fact, infinite motion is precisely what Newtonian mechanics predicts in the absence of

external force.

Thus, we see that there are several seemingly irreconcilable differences between the

Aristotelian and Newtonian worldviews, and that the Newtonian model more accurately

reflects reality. However, as we will see in the following subsections, there are circum-

stances under which the Aristotelian model is a very good approximation to the Newtonian

model. We begin by introducing a fundamental concept from fluid dynamics.

2.2 Reynolds number

One of the most important quantities used in the study of the fluid dynamics of a system

is a dimensionless quantity called the Reynolds number, Re. When a fluid flows through

a conduit or around an obstacle, the Reynolds number measures the turbulence of the

flow due to the cross-section of the conduit or obstacle. It is commonly defined by either

of the formulas

Re =
ρvsL

µ
, (1)

Re =
vsL

ν
(2)

where

• vs - mean fluid velocity

• L - characteristic length of the cross-section. If the cross-section is circular, it is the

diameter of the cross-section.

9
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• µ - dynamic fluid viscosity

• ν - kinematic fluid viscosity (ν = µ/ρ)

• ρ - fluid density

A fluid flow can be visualized as parallel layers moving past one another. A low

Reynolds number indicates that these layers are flowing freely and smoothly, with little

friction between them. Large Reynolds numbers, on the other hand, indicate a great deal

of interaction between the fluid layers, causing eddy currents that produce very turbulent

flows.

Associated with a flow is a critical Reynolds number which represents the transition

between laminar and turbulent flows. For example, water flowing through a circular pipe

has a critical Reynolds number of approximately 2300. With a Reynolds number of 1000,

the flow is laminar, while at 4000 the flow is quite turbulent. Near 2300, the flow may be

rather unpredictable.

In practice it can be very useful to compare two flows with one another. Two flows

are said to be similar if they have the same geometry and their Reynolds numbers are

equal. This idea is essential in the use of wind tunnels for testing aerodynamic stability

of aircraft, for example. Rather than subjecting a full-size model of the aircraft to a wind

tunnel, a scaled-down version can be used. However, in order to use the model to deduce

the behavior of the actual aircraft, the wind speed, air pressure and other parameters

must be appropriately scaled so that the Reynolds number of the model matches the

Reynolds number of the actual aircraft in flight.

In the case of our system of cells, it is instructive to calculate the Reynolds number

for a cell in a fluid medium and compare it to a larger system that is similar (has the

same Reynolds number).

In the case of the amoeboid Dictyostelium discoideum, we find the diameter of a large

cell to be about 10 microns. The density and viscosity of water at 30 degrees Celsius are

10
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995.7 kg/m3 and 7.975 × 10−4N · s/m2, respectively. With a velocity of 10 microns per

minute [1], we calculate the Reynolds number for the cell as

Re =
ρvsL

µ
=

995.7 kg/m3 · 10 µm/min · 10 µm
7.975× 10−4 N · s/m2

= 2.08× 10−6.

If we were to produce a similar flow with a cell scaled to 1 m in diameter, we would

find that

vs =
Re · µ
ρ · L

=
2.08× 10−6 · 7.975× 10−4 N · s/m2

995.7 kg/m3 · 1 m
= 3.33× 10−12 m/s.

So, to compare the flow of water around a cell of diameter 10 µm to the flow about one

of diameter 1 m (both in water), we would require the 1-meter cell to travel at a miniscule

speed of 3.33×10−12 m/s, or roughly 1.2×10−7 centimeters per hour. It would take such

a cell roughly 9 500 years to travel a single meter!

It is unreasonable to believe that we could compare such flows in any precise way. The

5 orders of magnitude that separate a cell of diameter 10 microns from our hypothetical

cell of 1 meter mean that our intuition of physics must be modified if we are to work with

cells at the microscopic level when such a small Reynolds number governs the behavior

of our system.

2.3 Low Reynolds number

If we manipulate equation (1), we find that

Re =
ρvsL

µ
=

ρvs

µ/L
.

That is, the Reynolds number can be thought of as the ratio between the effects of inertia

(ρvs) and the viscous forces (µ/L) of the system.

In the case, as above, where we have a low Reynolds number (Re � 1), this inter-

pretation of Re indicates that inertial effects involved in our system are several orders of

11
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magnitude smaller than the viscous forces present. Because of this, it is difficult, even in

a system of double precision arithmetic, to distinguish between ρvs and zero. In essence,

this allows us to think of such a system as being without the inertial principle. As Purcell

[10] says,

For these animals inertia is totally irrelevant. We know that F = ma, but

they could scarcely care less. . . . In water where the kinematic viscosity is

10−2 cm/sec these things move around with a typical speed of 30 µm /sec.

If I have to push that animal to move it, and suddenly I stop pushing, how

far will it coast before it slows down? The answer is, about 0.1Å. And it

takes it about 0.6µ sec to slow down. . . . Inertia plays no role whatsoever. If

you are at very low Reynolds number, what you are doing at the moment is

entirely determined by the forces that are exerted on you at that moment, and

by nothing in the past.

At this scale, things behave much as Aristotle and generations of scientists believed.

That is, the only thing that can produce motion is force, and in the absence of force there

is no motion. In particular, it is futile to discuss acceleration, for it is nearly instantaneous.

As Purcell noted above, it takes one of these cells travelling at a normal speed only 0.6µsec

to come to a full stop. Thus, it is not an unreasonable simplification to assume that a cell

is either at rest or is in uniform motion and that there is no acceleration as a transition

between the two.

This has some interesting consequences for Newton’s Laws of Motion. Since we neglect

acceleration, the familiar equation ∑
Fi = ma

becomes simply ∑
Fi = 0,

which will be extremely important to our calculations later on.

12
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3 Current Research and Models

Before discussing the model that is the subject of this paper, we discuss some recent

results in the study of adhesion and integrin behavior. This is followed by a discussion

of two one-dimensional models of a cell moving on a substrate—the first dividing the

cell into discrete subunits and the second treating the cells as a continuum. Finally, we

present two related three-dimensional models of cell interaction.

3.1 Integrin Function

As mentioned earlier, the integrins are a variety of molecules that reside in the bilipid layer

of the cell membrane. The main function of the integrins with which we are concerned

here is their role in the formation of cell bonds, though they also serve as an essential

means of signal transmission between the cell and its environment.

When two cells are in close proximity, their corresponding integrins bind to one an-

other, attaching the cells together, thus creating a pathway through which forces may be

transmitted between paired cells. That is, the bonds may be strong enough that cells can

pull on one another with enough force to cause distortion of their shapes or even translo-

cation of the cells themselves. The bond between integrins may even be strong enough

that a cell will actually cause integrins to be ripped from the cell membrane rather than

destroying the bond itself. Fibroblasts, for example, are known for this behavior.

Integrins have varying degrees of affinity for binding. It is not well known just how

these different states are attained or what induces one integrin to adopt a greater affinity

than another. However, as observed in [11], “Physical and biochemical data suggest

altered integrin affinity states are due to conformational changes in the receptor itself

rather than fluctuations in receptor number.” The spatial density of integrins, then,

doesn’t seem to have an impact on how likely a given integrin is to bond. Rather, the

integrin itself may change shape to encourage or inhibit bonding. Certain antibodies,

peptides, and cations are known to induce a high-affinity conformation state in integrins.

13
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It is also worthwhile to note that integrins are not restricted to any particular fixed

location on the surface of a cell. Rather, a cell may concentrate them in a particular area

to increase the number of bonding sites.

In addition to expressing various degrees of binding affinity, adhesion molecules may

exhibit varying degrees of bond strength. In [3], Evans and Ritchie discuss how the

strength of an individual adhesion bond can be measured, and how Brownian dynamics

can be used to describe the strength of these molecular bonds over time under various

force loads.

In addition to their role in adhesion, integrins “play a larger role in bidirectional sig-

naling with the extracellular environment.” They may signal the need to cluster integrins

together or to increase gene transcription, or even regulate intracellular pH [11].

3.2 DiMilla, Barbee, and Lauffenburger Model

DiMilla, Barbee, and Lauffenburger [2] treat cells as one-dimenensional objects existing

on a one-dimensional substrate. Thus, any angular properties exhibited by true cells are

ignored. To describe the shape of the cells, each cell is divided into discrete subunits, each

of which consists of a spring, a dashpot, and a contractile unit in parallel. All changes

in shape, including the extension and contraction of pseudopodia, are modelled by these

units. The subunits at the ends that represent pseudopodia each contain additional

springs—one spring models the natural stiffness of the pseudopod and the others model

changes in shape and transmission of force due to adhesion bonds.

This model treats cell movement in three distinct stages. In the first stage, the cell

redistributes adhesion receptors asymmetrically on its surface, giving preference to the

front, and extends a lamellipod forward. The model makes no account for the nature of

the stimulus that might induce the cell to extend the pseudopod and ignores the biophysics

of the lamellipod extension. It mainly accounts for the duration of such extensions.

During the second stage, the cytoskeleton of the cell contracts, exerting force on the
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adhesion bonds that run the length of the cell. If the substrate is not fixed, the cell may

cause substrate deformation. If, however, the substrate is fixed, the cell changes shape.

In particular, if the force exerted by the lamellipod is greater than the force exerted by

the uropod (tail) of the cell then the result is net forward motion of the main body of the

cell while the lamellipod and uropod contract.

The third stage consists of cytoskeletal relaxation as the cell ceases to transmit force

to the substrate through the adhesion bonds. The adhesion receptors are then redistrib-

uted over the surface of the cell, reducing the statistical asymmetry of adhesion receptor

distribution.

In discussing the distribution of adhesion receptors, cells are treated, geometrically,

as two rectangular sheets sewn together at the edges. This allows this distribution of

receptors, on both top and bottom, to be described by a simple rectangular coordinate

system.

The primary focus of this model is to predict the speed at which cells migrate on a

substrate, based on rheological properties of the cell and the formation and destruction

of adhesion bonds. An obvious limitation of the model, then, is that it provides no

mechanism for cells to interact with one another—It only describes the motion of a single

cell, being unable to model an interacting system. It is also limited in that it is one-

dimensional and there does not appear to be a natural mechanism for extending this

model to describe the motion of a cell in 3-space.

3.3 Gracheva and Othmer Model

Gracheva and Othmer [5] developed a one-dimensional cell on a viscous substrate. The

cell consists of a set of points lying between the cell front f(t) and rear r(t). Changes in

the shape of the cell are accounted for by the relative motion of the points in the interval.

The forces on the cell are the “internal active and passive stress, and the frictional

force due to the repetitive formation and breaking of attachments to the substrate.” They
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treat the cytoplasm as being made of a “linear viscoelastic material that gives rise to a

passive stress, an active protrusive stress due to actin polymerization concentrated at the

leading edge, and an active stress generated by the interaction of myosin II motors with

the cytoskeleton.”

This model integrates the effects of the actin-myosin network on the viscoelastic prop-

erties of the cell, including how this contributes to the cell’s contractile nature. In addition,

discrete adhesion sites are assumed.

3.4 Palsson and Othmer Model

Palsson and Othmer [9] treat Dictyostelium discoideum cells as deformable ellipsoids of

constant volume. That is, each cell is an ellipsoid with axes that are allowed to vary

with time and force, with the constraint that the cell maintains its volume under all

deformations. Each axis contains “a nonlinear spring in parallel with a Maxwell element

[a dashpot and spring in series]” which regulate the deformation of the cell. Cells are

allowed to be suspended in a fluid medium or in contact with a surface. When suspended,

cells are assumed to be spherical, but may be deformed upon contact with other objects.

In addition to shape, each cell is given an orientation—a direction in which the cell

tends to move. When not exposed to a chemotactic signal, the cell’s orientation is chosen

randomly. When exposed to a chemotactic signal, however, the cell moves so that it is

aligned with the signal.

This model examines the forces that are present in the system of cells and calculates

the motion of the cells over time from the force equations determined by Newton’s second

law of motion. The force equations are approximated by a system of first-order differential

equations, and are solved iteratively, essentially using Euler’s method.

The Palsson-Othmer model seems to be fairly successful at reproducing cell sorting

and aggregation experiments. On the other hand, the mechanism by which they simulate

adhesion is ad hoc and is not designed to be reflective of true adhesion behavior.
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3.5 Dallon and Othmer Model

Dallon and Othmer [1] attempt to improve on the model from Palsson and Othmer by

improving the mechanism by which Dictyostelium discoideum cells cling to one another

and to refine how they interact in three dimensions. It is based on the Palsson and Othmer

model, but “incorporating better descriptions of cell-cell and cell-substrate interactions.”

This model is then used to counter certain unexpected experimental results in how a

Dictyostelium discoideum slug produces and transmits force.
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4 The Adhesion Model

4.1 Adhesion and Potentials

Due to the changes in shape of which a living cell is capable, a pair of cells may interact

with one another over a range of distances. That is, there is an interval in which the

distance between their centers of mass may lie. If cells are interacting and too close

together, their cytoplasms and membranes deform, storing a rheological force that tends

to push the cells apart. On the other hand, if the cells are interacting from a large

distance, the cells tend to pull toward each other. Thus, there is a natural distance at

which interacting cells are at rest with respect to one another and toward which they

tend.

This tendency is reminiscent of the behavior of interacting atoms. When certain types

of atoms are distant (but not too distant) from one another, their tendency is attraction.

When they approach one another too closely, however, a repulsive force dominates, push-

ing the atoms apart. As with the cells, there is an optimal separation between pairs of

atoms toward which they tend. It seems natural, then, to use interacting atoms as a

model for interacting cells.

An advantage to this approach is that there is a wealth of theory in place to describe

the behavior of interacting atoms. For example, the motion of atoms acting under elec-

tromagnetic forces, as above, is often described using functions known as potentials. If

F : R3 → R3 is a vector field such that ∇× F ≡ 0 then there exists a twice-continuously

differentiable function f : R3 → R such that ∇f = F . The function f , unique up to an

additive constant, is called a potential function for the vector field F . Potentials have

been studied for centuries and there is much that is known about them.

However, interacting atoms are not entirely analogous to interacting cells. In both

systems, interacting objects repel when too close and attract when too distant, and tend

toward some distance of minimum potential energy. However, the mechanisms by which
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they do this are completely different. While it is tempting to employ potentials to study

interacting cells, in analogy with atoms, this should be avoided. The similarities do not

justify the use of potentials to model the behavior of interacting cells. This would be

mathematically simple, but in section 6.2 we will see that this is not reflective of the true

behavior of cells.

4.2 Holonomic Constraints

In examining the constraints on a system, we find that some constraints are much easier

to study than others. One type of constraint that is usually easier to work with than

others is called holonomic. A constraint is said to be holonomic if it can be expressed in

the form

f(x1, . . . , xn) = 0 (3)

where x1, . . . , xn are the variables manifest in the system.

A holonomic constraint reduces the number of degrees of freedom of a system. For

example, if x, y ∈ R are the variables of a system and can be chosen independently

then there are 2 degrees of freedom. If we add the constraint x − y = 3, then y is

completely determined by x (and vice versa) so there is only one degree of freedom. We

have reduced the input space by one degree from R2 to a one-dimensional topological

subspace of R2. Thus, a holonomic constraint, by reducing the input space to, perhaps,

a lower-dimensional manifold, may be applied by (explicitly or implicitly) solving for one

of the variables in terms of the others. The method of Lagrange multipliers can also be

used to impose many holonomic constraints.

A constraint that cannot be expressed in the form (3) is said to be nonholonomic. An

example of a nonholonomic constraint is

|x|+ |y| < 2.

While this constraint reduces the size of the input space from a measure theory standpoint,
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it does not reduce its dimension. It is still a two-dimensional topological subspace of R2.

In describing adhesion, one might assume that if two cells are interacting then their

centers of mass x and y must satisfy

0 < dmin < |x− y| < dmax < ∞

where dmin and dmax are minimum and maximum allowable distances between interact-

ing cells. This spatial constraint is clearly nonholonomic. Numerically, this constraint

significantly reduces the search space for a solution. However, x and y lie in R3 so that,

mathematically, the input space is still a 3-dimensional submanifold of R3—a ball whose

core has been removed.

In our model, however, we introduce a different sort of constraint. Rather than con-

sidering the allowable distances to vary, we require the distance between the two cells to

be zero. However, this is not the distance between the centers of mass. Rather, we think

of two cells as closed topological balls. As such, the distance we use is a standard one for

measuring the separation of subsets of Rn. That is,

d(A,B) = inf {‖x− y‖2 | x ∈ A, y ∈ B}

where ‖x‖2 =
√

xT x.

With this idea in mind, we can phrase our constraint thus: If adhesion is acting

between cells A and B then d(A,B) = 0. This constraint is clearly holonomic. Intuitively,

we can think of this constraint as forcing the two cells A and B to be tangent at some

point. Thus, if we think of one of the cells as being fixed in space then the other must

move about on the surface of the first. In this way, we have reduced the space in which a

cell can move from three dimensions to two. It is now a topological sphere (the boundary

of a topological ball).

An important effect of this adhesion constraint is that the difficulty is no longer in

calculating the magnitude of the adhesion force. Rather, the difficulty lies in describing

the shape of the surface (membrane) of the cells—especially in calculating the changes
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the shape of a cell undergoes when in contact with other cells. In order to examine the

system of equations that governs the motion of a system of cells, we will be making some

assumptions that, though unrealistic, allow us to reduce the complexity of the system so

that we are able to study it.

4.3 Simplifying Assumptions

Since great difficulty lies in describing the shape of cells over time, the first assumption

that we will make is that our cells are rigid spheres, each of the same radius r. We

will not account for any variation in the size of specimens, nor will we account for the

rheological properties of the cells. That is, the cell membrane and cytoplasm do not change

shape, nor do they absorb force—they simply transmit it. In particular, the formation of

pseudopodia and lamellipodia is completely ignored.

In the general model, we think of cells as being in contact when their membranes

are tangent to one another. Since we are here fixing the shape of the cell membrane

as a sphere, and the cells may not overlap, the natural assumption is that cells are in

contact with one another if and only if their spherical shells are tangent to one another.

Specifically, if xi and xj represent the centers of the two spherical cells that are in contact

then
∥∥xi − xj

∥∥
2

= 2r.

The system we will work with consists of n of these rigid spherical cells. We arbitrarily

number the cells from 1 to n and, as suggested above, we denote the position in R3, relative

to a fixed orthonormal basis, of cell i by xi. We may refer to the kth component of the

position vector xi by xi
k. It should be noted that, since no two cells can occupy the same

position, xj − xi = 0 if and only of j = i. The following notation will be helpful as

we proceed to examine the forces acting on each cell, in order to produce the system of

differential equations that governs the motion of the cells.

Notation 1. In addition to ‖·‖2, we will use the following notational conventions:

1. ‖x‖∞ denotes the infinity norm of the vector x. That is, if x ∈ Rn then ‖x‖∞ =
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max
{
|xk|

∣∣k = 1, . . . n
}

2. x̂ =
x

‖x‖2

, if x is not the zero vector.

3. ẋ denotes the componentwise derivative of the vector function x with respect to the

time variable t. That is, ẋ =
dx

dt
=


dx1
dt

...

dxn
dt

 .

4.4 The Force Equations

We consider the following forces that affect the motion of cell i:

1. Motive Force. This is the force produced when cell i pushes or pulls against an

object external to the system of cells, such as the substrate. It accounts for the

reactive force when the cell exerts force in the substrate in response to a stimulus.

It is this reactive force that results in motion of the cell. It also includes the reactive

force when the cell is pushed against the substrate by another cell. This component

is what prevents the cell from passing through the substrate rather than crawling on

the surface. A more sophisticated treatment of the model would distinguish between

these two forces, but we will combine their effects and denote this composite force

Mi. Due to the variety of possible interactions with non-cell objects, the motive

force may be of arbitrary magnitude and direction.

2. Adhesion. This force is active between a pair i, j of cells only when the two cells are

in close proximity (i.e., the spherical shells are tangent). This force represents the

tendency of cells to resist being separated once they are near to one another. It arises

between a pair of cells when the net force acting on each would separate them. The

magnitude of the adhesion force is equal to the magnitude of the net force pulling

the two cells apart. If, however, the net force pulling them apart is larger than the

maximum adhesion force that the cell can maintain, then the adhesion breaks and
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the cells are pulled apart. Numerically, then, there is a Heaviside function to break

the bond if the force is too great, but we will not explicitly include the Heaviside

function in our calculations here.

The adhesion force acting on cell i due to contact with cell j is orthogonal to the

surface of cell i at the point of tangency. Thus, this force is in the direction of

(xj − xi), and is denoted Aij so that Aij = ‖Aij‖2 x̂j − xi. Since forces occur in

action/reaction pairs, we have Aij = −Aji.

3. Repulsion. This force, too, is active between a pair i, j of cells only when the two

cells are very close. It arises when the net force acting on each cell would push the

pair closer together. Since the cells are considered to be rigid spheres, they cannot

be made to be closer than twice the radius of the cell (within numerical tolerance).

It is always exactly equal in magnitude to the net force pulling the two cells together.

This constraint prevents the cells from overlapping.

The repulsive force acting on cell i due to interaction with cell j occurs in the

direction (xi−xj), and is denoted Pij = ‖Pij‖2 x̂i − xj . As above, since forces exist

in action/reaction pairs, we have Pij = −Pji.

Clearly, adhesion and repulsion are mutually exclusive. That is, a pair of cells

cannot be simultaneously pulling and pushing on one another. At a given instant,

therefore, no more than one (perhaps neither) of ‖Pij‖2 and ‖Aij‖2 is nonzero.

As discussed above, adhesive and repulsive forces preserve the distance between cell

membranes at zero, providing our holonomic constraint. Since our cells are spheres,

this is equivalent to
∥∥xj − xi

∥∥
2

= 2r, where xi and xj are the centers of the cells.

Differentiating, we obtain the equivalent condition

(xi − xj)T (ẋi − ẋj) = 0. (4)

4. Friction.
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(a) Substrate/Fluid. As cell i travels, it has an area Aif of its surface (membrane)

in contact with the fluid medium. It is possible that Aif = 0. A cell that is

entirely surrounded by other cells satisfies this condition, for example. The

viscous forces of the fluid resist the translation of the cell through the fluid.

We take this resistance to be jointly proportional to Aif and to
∥∥ẋi

∥∥
2
, with

constant of propotionality µf , and in the direction −ẋi. Thus, the viscous force

can be written −µfAif ẋi.

Similarly, a cell may have an area Ais in contact with the substrate. As above,

it is possible that Ais = 0. Similarly, we assume that the substrate in contact

with the cell produces a frictional force −µsAisẋ
i.

Since densely packed spheres can have as many as 12 neighbors, we assume

that each cell in contact with cell i occupies
1
12

the surface area of cell i. That

is, we assume that fluid directly between interacting cells, occupying
1
12

the

surface area of the cell, moves with the cells so that it does not resist the motion

of the cells. Therefore, we take the total surface area in contact with the fluid

and substrate to be

Aif + Ais = 4πr2
(
1− ni

12

)
where ni is the number of cells in surface contact with cell i.

Since both of these forces are in the same direction, we can consider them

together as a single frictional force −µiẋ
i where µi = µsAis + µfAif . It should

be emphasized that µi is not a constant. While we assume homogeneity of

the fluid medium and substrate so that µf and µs are constant, the two areas

involved depend upon the number of cells in contact with cell i, and thus upon

the positions of all the other cells relative to cell i. Therefore, µi is really

a function of the positions of all cells in the system. However, for ease of

calculation this dependence will be suppressed in the notation.
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(b) Intercellular. Since we are assuming that our cells are rigid spheres, equation

(4) requires that whenever our cells adhere to (or repel) one another, their

relative velocity is tangential to both spheres at the point where they are in

contact. Thus, in this circumstance, the two cells can be thought of as “sliding”

past one another.

This produces a friction-like force between the cells in the direction opposite

their relative velocity. Its magnitude is proportional to the magnitude of the

relative velocity, with proportionality µij . So, we denote this force by −µij(ẋi−

ẋj). Note that µij = µji since these forces exist in action/reaction pairs. If

cells i and j are not in contact then, naturally, µij = 0. In the physical system,

µij might be thought of as a function of the distance between cells i and j.

Note also that a cell is always in contact with some combination of the sub-

strate, the fluid medium, and other cells, so that at least one of µi, µi1, µi2, . . . , µin

is positive, and so the sum µi +
∑
j 6=i

µij is also positive.

From Newton’s second law of motion, we know that the motion of cell i obeys the

vector differential equation

miẍi =
∑

j

Fij

where the vectors Fij are the forces acting on cell i. However, from our discussion of

the low Reynolds number of the system, we have miẍi ≈ 0, so that we may neglect the

left-hand side of the equation and approximate the equation as

∑
j

Fij = 0.

Thus, the motion of cell i is approximated by the first-order vector differential equation

−µiẋ
i − µi1(ẋi − ẋ1)− · · · − µin(ẋi − ẋn)

+Ai1 + · · ·+Ain + Pi1 + · · ·+ Pin + Mi = 0.

(5)
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The entire system, then, is:

µ1ẋ
1 +

∑
j 6=1

µ1j(ẋ1 − ẋj) =
∑
j 6=1

(A1j + P1j) + M1,

...

µnẋn +
∑
j 6=n

µnj(ẋn − ẋj) =
∑
j 6=n

(Anj + Pnj) + Mn.

(6)

4.5 The Matrix Equation

System (6) will now be expressed as a matrix equation, rather than as a system of equa-

tions. In order to simplify the form of the matrix equation, however, we will rearrange

the terms in equation (5) as follows:

Mi = µiẋ
i +

∑
j 6=i

µij(ẋi − ẋj)−
∑
j 6=i

Aij −
∑
j 6=i

Pij

=

µi +
∑
j 6=i

µij

 ẋi −
∑
j 6=i

µij ẋj −
∑
j 6=i

(‖Aij‖2 − ‖Pij‖2) x̂j − xi.

(7)

In order to facilitate calculations and since x̂j − xi =
xj − xi

‖xj − xi‖2

, we define

aij =
‖Aij‖2 − ‖Pij‖2

‖xj − xi‖2

(8)

and find that

(‖Aij‖2 − ‖Pij‖2) x̂j − xi = aij (xj − xi).

Note that aij = aji so that aij(xi − xj) = aji(xj − xi). Since adhesion and repulsion are

mutually exclusive, we find that aij > 0 if and only if cells i and j are adhering, while aij <

0 if and only if the two cells are repelling one another. The values of the coefficients aij are

unknowns in this system, and are to be calculated as a step in determining the motion of

the cells. Once these coefficients are calculated, the magnitudes of the adhesive/repulsive

forces can be found by calculating each quantity |aij |
∥∥xi − xj

∥∥
2
. Substituting equation

(8) into equation (7), we have a much simpler representation of the system:

Mi =

µi +
∑
j 6=i

µij

 ẋi −
∑
j 6=i

µij ẋj +
∑
j 6=i

aij (xi − xj). (9)
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We now construct a matrix equation that is equivalent to the system (9) of equations

governing the motion of the system of cells. Observe that if, for each i, we define the

3n× 1 vector ẋ and the 3× 3n matrix Vi by

ẋ =



ẋ1

...

ẋi

...

ẋn


,

Vi =

−µi1I, . . . ,−µi(i−1)I,

µi +
∑
j 6=i

µij

 I,−µi(i+1)I, . . . ,−µinI

 ,

where I is the identity matrix in R3, then equation (9) becomesµi +
∑
j 6=i

µij

 ẋi −
∑
j 6=i

µij ẋj = Viẋ. (10)

In order to facilitate calculations later, we now need a systematic way of ordering the

numbers aij . Though the order is irrelevant, it seems convenient to order them as follows:

a12, a13, a23, a14, a24, a34, . . . , a1n, . . . , a(n−1)n.

Observe that the terms appear in (n−1) clusters, the first cluster containing one element

and each successive cluster incremented in size by one, for a total of
1
2
n(n− 1) elements.

Now we would like to be able to determine, under this ordering, the location of ahk

for given h, k. Similarly, it is useful to be able to caculate, for given j, the integers h, k

if ahk is the jth term in the sequence. With this in mind, observe that if l is a positive

integer then the total number of elements in the first l clusters is

1 + 2 + 3 + · · ·+ l =
1
2
l(l + 1).

Let ahjkj
be the jth term in the sequence. Notice that this term lies in the (kj − 1)th

cluster. Therefore, exactly (kj − 2) complete clusters precede the jth term, so that

1
2
(kj − 2)(kj − 1) < j ≤ 1

2
(kj − 1)(kj).
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Considering these two inequalities independently, we find that∣∣∣∣kj −
3
2

∣∣∣∣ <
1
2

√
8j + 1,∣∣∣∣kj −

1
2

∣∣∣∣ ≥ 1
2

√
8j + 1.

Putting them together and observing that k ≥ 2, we find that

0 ≤ kj −
1
2

(
1 +

√
8j + 1

)
< 1.

Thus,

kj =

⌈
1
2

(
1 +

√
8j + 1

)⌉
where d·e denotes the least integer, or ceiling, function. Finally, a quick observation shows

that

hj = j − 1
2
(kj − 2)(kj − 1).

By reordering this equation, we see that if ahk is in the sequence then ahk is the jth term,

where j = j(h, k) may be calculated as

j = h +
1
2
(k − 2)(k − 1).

We now construct the 3n × 1
2
n(n − 1) block matrix A and the

1
2
n(n− 1)× 1 block

vector a as follows: For each 1 ≤ h < k ≤ n, if cells h and k are close enough to interact

then set Ahj = xh − xk, Akj = xk − xj and aj = ahk. Otherwise, set Ahj = 0, Akj = 0

and aj = ahk = 0. In the matrix equation, A controls the direction of each adhesion

force, while a encodes the magnitudes of the adhesion vectors. We will see later that the

holonomic constraint discussed earlier can be phrased in terms of A. Note that, since a

cell can only have as many as 12 neighbors, and a nonzero column accounts for a single

interacting pair, A has no more than 6n non-zero columns and the corresponding entries

of a are the only entries of a that can possibly be non-zero. With Ai denoting the ith row

of blocks of A, we find that

Aia =
n∑

j 6=i

aij(xi − xj). (11)
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We now substitute equations (10) and (11) into equation (9) to see that

Mi = Viẋ + Aia. (12)

Thus, if we rewrite the entire system in this way, we have the matrix equation

M = V ẋ + Aa, (13)

where

V =


V1

...

Vn


tracks the friction interactions and

M =


M1

...

Mn

 .

represents the motive forces of the collection of cells.

It is easy to see that V is a block matrix of the form

V =



µ1 +
∑
k 6=1

µ1k

 I −µ12I . . . −µ1nI

−µ12I

µ2 +
∑
k 6=2

µ2k

 I . . . −µ2nI

...
...

. . .
...

−µ1nI −µ2nI . . .

µn +
∑
k 6=n

µnk

 I


.

So, V can be represented as

V = W ⊗ I,

where ⊗ denotes the Kronecker (direct) product and
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W =



µ1 +
∑
k 6=1

µ1k −µ12 . . . −µ1n

−µ12 µ2 +
∑
k 6=2

µ2k . . . −µ2n

...
...

. . .
...

−µ1n −µ2n . . . µn +
∑
k 6=n

µnk


.

The matrix W is clearly symmetric, so its eigenvalues are real. Furthermore, since µi

and µij are non-negative real numbers for each i and j, we clearly have the inequality

wii = |wii| ≥
∑
j 6=i

|wij |.

The Geršgorin disk theorem, therefore, tells us that the eigenvalues of W lie in the right

closed half-plane. That is, the eigenvalues of W are all non-negative real numbers. We

conclude that W is positive semi-definite and, therefore, so is V . To complete the analysis

of the matrix system, we need to show that V is positive definite. If W is invertible, then

V = W ⊗I is also invertible and, therefore, positive definite with inverse V −1 = W−1⊗I.

If it is the case that µi 6= 0 for each i then the Geršgorin theorem guarantees that W is

invertible. However, if cell i is completely enclosed by other cells then µi = 0. Therefore,

we pause our discussion of this matrix system so that we can construct the tools we need

in order to conclude that W is nonsingular.
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5 Matrix Analysis

We begin this section by defining some notation and a vector product that we will employ

throughout the section. Throughout this section, the symbols i, j, k, l,m, and n will always

denote positive integers.

Notation 2. Let Mm,n denote the set of m× n matrices whose entries lie in the field C

of complex numbers. Let A ∈ Mm,n be a matrix. We will denote by aij the entry of A

lying in the ith row and jth column. We will denote the ith row vector of A by Ai. That

is,

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn


and

Ai =
(
ai1 . . . ain

)
.

Also, we will denote by A∗ the Hermitian transpose of A.

Definition 1. Let x, y ∈ Rn. We define the product 〈x, y〉 by the formula

〈x, y〉 =
n∑

j=1

|xjyj |.

Note that here we make no distinction between row vectors and column vectors. In

general, we will consider row vectors and when referring to columns of A we will actually

treat them as rows of A∗. Before proceeding further, we demonstrate some basic facts

about the product 〈·, ·〉.

Lemma 1. Let x, y, z ∈ Cn and α ∈ C. Then:

(a) 〈x, y〉 ≥ 0.

(b) 〈x, x〉 = 0 ⇐⇒ x = 0.

(c) 〈y, x〉 = 〈x, y〉.

(d) 〈αx, y〉 = |α|〈x, y〉.
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(e) 〈x + z, y〉 ≤ 〈x, y〉+ 〈z, y〉.

(f) 〈x, y〉 6= 0 if and only of there is an index k such that xk and yk are both nonzero.

Proof.

(a) This is immediate, since 〈x, y〉 is the sum of non-negative terms.

(b) 〈x, x〉 = 0 ⇐⇒
n∑

j=1

|x2
j | = 0

⇐⇒ |xj |2 = 0 for each index j

⇐⇒ xj = 0 for each j

⇐⇒ x = 0.

(c) 〈y, x〉 =
n∑

j=1

|yjxj | =
n∑

j=1

|xjyj | = 〈x, y〉.

(d) 〈αx, y〉 =
n∑

j=1

|αxjyj |

=
n∑

j=1

|α||xjyj |

= |α|
n∑

j=1

|xjyj |

= |α|〈x, y〉.

(e) 〈x + z, y〉 =
n∑

j=1

|(x + z)jyj |

=
n∑

j=1

|(xjyj + zjyj |

≤
n∑

j=1

|xjyj |+
n∑

j=1

|zjyj |

= 〈x, y〉+ 〈z, y〉.

(f) 〈x, y〉 6= 0 ⇐⇒
n∑

j=1

|xjyj | 6= 0

⇐⇒ |xkyk| 6= 0 for some k

⇐⇒ xk 6= 0 and yk 6= 0 for some k.
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Corollary 1. Let A ∈ Mm,n and let D ∈ Mm,m and D′ ∈ Mn,n be diagonal matrices,

with D′ invertible. Then

〈(DA)i, (DA)j〉 = |dii||djj | 〈Ai, Aj〉

and

〈(AD′)i, (AD′)j〉 = 0 ⇐⇒ 〈Ai, Aj〉 = 0.

Proof. Since D is diagonal, then (DA)i = diiAi for each i. Therefore,

〈(DA)i, (DA)j〉 = 〈diiAi, djjAj〉

= |dii||djj | 〈Ai, Aj〉.

Since D′ is invertible, d′ii 6= 0 for each i. Therefore,

〈(AD′)i, (AD′)j〉 = 0 ⇐⇒
n∑

k=1

|aikdkkajkdkk| = 0

⇐⇒ |aikdkkajkdkk| = 0 for each k

⇐⇒ |aikajk| = 0 for each k

⇐⇒
n∑

k=1

|aikajk| = 0

⇐⇒ 〈Ai, Aj〉 = 0.

Notation 3. Let σ be a permutation on n letters. Then we define the permutation matrix

Sσ by sij = δiσ(j), where δij denotes the Kronecker delta function.

Lemma 2. The product 〈·, ·〉 is invariant under the permutation of rows and columns of

a matrix in the following sense: If S = Sσ ∈ Mm,m and T = Sτ ∈ Mn,n are permutation

matrices, and A ∈ Mm,n then

〈 (SAT )σ(i) , (SAT )σ(j) 〉 = 〈Ai, Aj〉
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Proof. Since S = Sσ and T = Sτ are permutation matrices, we have sij = δiσ(j) and

tij = δiτ(j). Therefore, we calculate the entries of SA and AT as follows:

(SA)σ(i)j =
n∑

k=1

sσ(i)kakj =
n∑

k=1

δσ(i)σ(k)akj = aij , (14)

(AT )ij =
n∑

k=1

aiktkj =
n∑

k=1

aikδkτ(j) = aiτ(j). (15)

From (14) we have the following:

〈(SA)σ(i), (SA)σ(j)〉 =
n∑

k=1

|(SA)σ(i)k(SA)σ(j)k|

=
n∑

k=1

|aikajk|

= 〈Ai, Aj〉.

(16)

Similarly, from (15) we have:

〈(AT )i, (AT )j〉 =
n∑

k=1

|(AT )ik(AT )jk|

=
n∑

k=1

|aiτ(k)ajτ(k)|

=
n∑

k=1

|aikajk|

= 〈Ai, Aj〉.

(17)

The second and third sums in this previous step are equal because the third sum is

merely a reordering of the terms of the second. We now combine the previous two results

to obtain the desired conclusion:

〈(SAT )σ(i), (SAT )σ(j)〉 = 〈((SA)T )σ(i), ((SA)T )σ(j)〉

= 〈(SA)σ(i), (SA)σ(j)〉

= 〈Ai, Aj〉.

(18)

Observe that right permutation (permutation of columns) has no effect on the product

〈·, ·〉.
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Definition 2. Let A ∈ Mm,n be a matrix. A finite sequence (p1, p2, . . . , pk) of positive

integers is called a chain of rows of A if {p1, . . . , pk} ⊂ {1, . . . ,m} and for i ∈ {1, . . . , k−1}

we have 〈Api , Api+1〉 > 0. That is, for each consecutive pair (pi, pi+1) of integers in the

sequence there is at least one integer j such that the jth component is nonzero in both

rows pi and pi+1. A chain of columns of A is a chain of rows of A∗.

With this definition in place, we observe that if S and T are permutation matrices and

(i1, . . . , ir) is a chain of rows of A, then (σ(i1), . . . , σ(ir)) is a chain of rows of SAT . This

follows quickly from Lemma 2 because if 1 ≤ k < r, then

〈(SAT )σ(ik), (SAT )σ(ik+1)〉 = 〈Aik , Aik+1
〉 6= 0.

Thus, we may reorder the rows and columns of a matrix without destroying its chains

of rows and columns. That is, reordering rows simply moves chains of rows and has no

effect on chains of columns, while reordering columns has similar effects on the chains

rows of A∗. We also observe that the effect of Lemma 1 is that multiplication (on the

left or right) of a matrix A by an invertible diagonal matrix has no impact on the chain

structures of A and A∗.

We also note that it follows immediately from Lemma 2 and from the symmetry of

〈·, ·〉 that if (p1, p2, . . . , pk) is a chain of rows of A, then the sequence (pk, pk−1, . . . , p1) is

also a chain of rows of A.

Definition 3. A chain of rows (p1, . . . , pk) of A will be called diagonal if for each i ∈

{1, . . . , k − 1} we have |apipi+1api+1pi+1 | > 0.

Notation 4. We write i A∼ j if i = j or if there exists a chain (p1, p2, . . . , pk) of rows of

A with p1 = i and pk = j. If there exists a diagonal chain (p1, . . . , pk) of rows of A such

that p1 = i and pk = j, then we write i A→ j.

We will find in this section that there are several proofs in which the crucial idea is to

show that some particular property is transitive with one of the relations A∼ and A→. That
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is, any property (in general, any logical statement that evaluates to TRUE) that is passed

from row i to row j whenever 〈Ai, Aj〉 6= 0 or when |aijajj | > 0 is then passed along to

every element to which there is a chain (or diagonal chain) from j. The most natural

example of this is the logical condition Pi(k) = i A∼ k itself. That is, for a fixed number

i, Pi(k) evaluates to TRUE if i A∼ k and to FALSE otherwise. Because 〈Aj , Ak〉 6= 0 is

the condition that allows us to move between elements j and k of a chain, we conclude

that if i A∼ k and 〈Aj , Ak〉 6= 0 then i A∼ j because we have a natural way to construct a

chain from i to j. So, the property Pi is passed from connect to connect. We would like

to conclude, then, that Pi is passed to the entire chain. For this purpose, we introduce

the following lemma:

Lemma 3. Let A ∈ Mm,n. Let P and R be logical statements that satisfy the following

conditions for every pair of integers k, i:

(a) P (i) whenever 〈Ak, Ai〉 6= 0 and P (k).

(b) R(i) whenever |akiaii| > 0 and R(k).

Then

(a) P (i) whenever k A∼ i and P (k).

(b) R(i) whenever k A→ i and R(k).

Proof. The proofs of (a) and (b) are exactly symmetric to one another, so we omit the

proof of (b) and we prove (a). Let (p1, . . . , pn) be a chain of rows of A. We induct on n:

The case n = 1 is trivial, since the chain has a single element p1 and if P (p1) then

certainly P (p1).

For the inductive step, assume that the result holds for n = k − 1 and assume that

P (p1). Then, by the inductive hypothesis, P (pk−1). But since (p1, . . . , pk) is a chain we

have 〈Apk−1
, Apk

〉 6= 0. By condition (a), then, we have P (pk).

By induction, then, claim (a) holds.
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Lemma 4. The relation A∼ is an equivalence relation and the relation A→ is transitive.

Proof. 1. Reflexivity. Since for each i we have i = i, then i A∼ i by definition.

2. Symmetry. Let i A∼ j. If i = j then clearly j A∼ i. Otherwise, there is a chain

(p1, p2, . . . , pk) of rows of A with p1 = i and pk = j. Then (pk, pk−1, . . . , p2, p1) is a

chain starting with row j and ending at row i, so j A∼ i.

∴ i A∼ j ⇒ j A∼ i.

3. Transitivity. Consider the logical statements P (n) = “i A∼ n” and R(n) = “i A→ n.”

By definition, both A∼ and A→ satisfy the conditions of Lemma 3, so that both

relations are transitive, which completes the proof.

Definition 4. If i A∼ j then we say that i and j are connected in A. If A is a matrix such

that each pair of rows is connected, then A will be called connected. If i and j are not

connected in A, then we will say that i and j are disjoint in A. If i A→ j then we will now

say that i is diagonally connected to j in A. If A is a matrix such that i A→ j for each pair

i, j then A is called diagonally connected.

The motivation for this terminology comes from the system of cells that we are study-

ing. Two cells i and j are connected if they are in contact, or if there is a sequence of cells

beginning and ending with cells i and j, respectively, such that every consecutive pair is

in contact. Thus, we may draw an analogy between a collection of cells and a graph, with

cells as vertices and undirected edges between vertices representing contact between the

two cells. A collection of cells is connected if the corresponding graph is connected.

Each row of the matrix W produced by the cell system represents the contact between

a fixed cell and with all other cells and with the substrate and fluid. For example, if two

cells are in contact then there is a column in which both corresponding rows are nonzero.

The diagonal entries represent the sum of all contact of the cell with other cells and with
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the substrate or fluid. In this context, it is impossible to have all entries for a cell (an

entire row) be zero, since the cell is always in contact with some combination of cells,

substrate, and fluid. So, in the matrix representing the physical system, a row of zeros

has no meaning and will, therefore, never appear. The use of the word “connected” in

connection with zero rows is merely to simplify the terminology and extend it to matrices

that are more general than those that really concern us in this paper.

In terms of the system of cells, the use of the term “diagonally connected” carries

with it no particular meaning. Rather, it derives from the fact that these connections are

passed on the diagonal entries themselves. It is this structure, though, that will guarantee

us invertibility of W . In the case of cells, when two cells are in contact, each has the same

amount of contact with the other. This results in a matrix that is symmetric, so we are

aided by the lemmas that follow.

Before we come to them, however, it is important to recognize that not all cells in a

system need be connected to one another. Some cells may be in contact with no other

cell. There may be several clusters of cells that are connected within the cluster but the

clusters themselves are not connected. The following lemma allows us to decompose the

system of cells into connected clusters so that each cluster can be considered individually.

Since we may permute rows or columns of zeros down and to the right, and then

consider the submatrix without the rows and columns of zeros, we will lose no generality

in assuming that there are no rows or columns of zeros in the following:

Lemma 5. If A ∈ Mm,n has no rows or columns consisting entirely of zeros then there

exist permutation matrices S and T such that SAT ∗ is a block matrix of the form

SAT ∗ =


B1

B2

. . .
Bk


where Bi and (Bi)T are connected matrices for each i (The superscripts are to be inter-

preted as indices rather than exponents). In particular, if A is Hermitian then S and T
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may be chosen so that T = S∗ and Bi is Hermitian for each i.

Proof. This proof provides an inductive construction for the matrices S and T .

Let aı̂̂ be a nonzero entry of A. Let r1 = ı̂, r2, . . . , rk be the integers that satisfy ı̂ A∼ ri

and s1 = ̂, s2, . . . , sl be those that satisfy ̂ A∗∼ si.

Let σ and τ be any permutations on n letters that map as follows:

σ :



r1 7→ 1

r2 7→ 2
...

rk 7→ k

, τ :



s1 7→ 1

s2 7→ 2
...

sl 7→ l

.

Note that if A is Hermitian then 1 A∼ i if and only if 1 A∗∼ i, so that in this case we can

choose σ = τ .

Let L1 = Sσ and R1 = Sτ .

Claim: The matrix H = L1AR∗
1 is of the form

H =
(

B 0
0 A1

)
.

where B1 ∈ Mk,l and A1 ∈ Mm−k,n−l and B1 and B∗
1 are both connected.

Proof of claim: By Lemma 2 we have

i H∼ 1 ⇐⇒ 1 ≤ i ≤ k, (19)

j H∗∼ 1 ⇐⇒ 1 ≤ j ≤ l. (20)

Suppose, by way of contradiction, that aij 6= 0 for some i > k and 1 ≤ j ≤ l. Since

i > k, we do not have r H∼ i if r ≤ k. This means that if r ≤ k then 〈Hr,Hi〉 = 0 so

that in particular hrj = 0 (since hij 6= 0). Since H∗
j 6= 0 and j H∗∼ 1, there is some integer

s such that 〈H∗
j ,H∗

s 〉 > 0. Therefore, |hl,shl,j | > 0 for some l. By the above argument,
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this forces hrs = 0 whenever 1 ≤ r ≤ k. By Lemma 3, then, hrs = 0 for each r whenever

j H∗∼ s. Since j H∗∼ 1, hr1 = 0 for 1 ≤ r ≤ k. But this contradicts the fact that h11 6= 0.

Thus, our supposition was false and so aij = 0 if i > k and 1 ≤ j ≤ l. Performing

the same steps on H∗ shows that aij = 0 if 1 ≤ i ≤ k and j > l. So, H has the block

structure as claimed. It only remains to show that B and B∗ are connected. This follows

quickly, for

〈Bi, Bj〉 =
l∑

s=1

|bisbjs|

=
l∑

s=1

|bisbjs|+
n∑

s=l+1

0

=
l∑

s=1

|hishjs|+
n∑

s=l+1

|hishjs|

=
n∑

s=1

|hishjs|

= 〈Hi,Hj〉

so that connections in B are inherited from H. Similar calculations work for B∗. Thus,

B and B∗ are both connected as claimed.

Let B1 = B. The previous steps are repeated inductively on A1. The process will

terminate when the construction leaves a null block in the lower right. This is because

the process is shown to create a diagonal block structure and by hypothesis if there are

entries left in the lower right then at least one of them is non-zero.

Note if A is Hermitian then each iteration of this process allows us to preserve the

Hermitian nature of A so that each block in the decomposition is Hermitian.

Definition 5. The matrices B1, . . . , Bk produced by Lemma 5 are called the connected

components of A.

Thus, A is invertible if and only if each connected component of A is a square invertible

matrix. In addition, the construction provides us with the following corollary.
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Corollary 2. If A has no rows or columns consisting entirely of zeros, then A and AT

each have the same number of connected components.

Lemma 6. Let A ∈ Mn,n be a Hermitian matrix whose diagonal entries are nonzero.

Then i A∼ j ⇐⇒ i A→ j. In particular, if A is connected then A is diagonally connected.

Proof. That r A→ s implies r A∼ s follows by definition.

To show the reverse implication, assume that r A→ k and 〈Ak, Ai〉 6= 0. Since 〈Ak, Ai〉 >

0 there is an index j such that |ak,jai,j | > 0, which forces ak,j 6= 0 and aj,i = ai,j 6= 0.

Since aj,j and ai,i are both nonzero, we have |ak,jaj,j | > 0 and |aj,iai,i| > 0 so that

r A→ k A→ j A→ i and by transitivity we have r A→ i.

Thus, the logical statement P defined by P (k) = “r A→ k” satisfies condition (a) of

Lemma 3 so that, whenever r A→ k and k A∼ i, we have r A→ i. But r A→ r since the diagonal

entries A are all nonzero. Therefore, r A→ i whenever r A∼ i, completing the claim. That

A is diagonally connected if A is connected follows immediately.

It is worth noting that requiring A to be Hermitian was actually a stronger condition

than what we needed. All we really relied on was that the non-zero entries of A appear

symmetrically with respect to the diagonal of A.

Definition 6. We say that a row i of a matrix A ∈ Mm,n is diagonally dominant if its

entries satisfy the inequality

|aii| ≥
∑
j 6=i

|aij |.

If this inequality is not an equality, then we say that row i is strictly diagonally dominant.

If each row of A is (strictly) diagonally dominant then we will say that A is (strictly)

diagonally dominant.

Lemma 7. Let D ∈ Mm,m be an invertible diagonal matrix and let A ∈ Mm,n. Then Ai

is (strictly) diagonally dominant if and only of (DA)i is (strictly) diagonally dominant.
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Proof. Consider the matrix A′ = DA. A quick calculation shows that a′ij = diiaij . This

means that

|a′ii| = |dii||aii|,∑
j 6=i

|a′ij | =
∑
j 6=i

|dii||aij | = |dii|
∑
j 6=i

|aij |,

|a′ii| ≥
∑
j 6=i

|a′ij | ⇐⇒ |dii||aii| ≥ |dii|
∑
j 6=i

|aij |

as claimed. Furthermore, each of the two inequalities is strict if and only if the other is

also strict.

Theorem 1. Let A ∈ Mn,n(C) be a diagonally connected, diagonally dominant matrix

and let D = diag(a11, . . . , ann). Then A is singular if and only of A can be factored as

A = DBCB∗, where B is a unitary diagonal matrix and C is a diagonally connected real

matrix that satisfies the following:

1. cii = 1 for each i.

2. cij ≤ 0 whenever j 6= i.

3.
n∑

j=1

cij = 0 for each i ∈ {1, . . . , n}.

Moreover, this factorization is unique in the sense that if A = DB′C ′B′∗ is another

such decomposition then C ′ = C and B′ = αB for some scalar α such that |α| = 1.

Proof. The “if” implication is trivial. We assume that A admits such a factorization and

let b ∈ Rn be defined by b = (1, 1, . . . , 1)T . We calculate Cb, taking advantage of equality

3:

Cb = C

1
...
1

 =

c11 + · · ·+ c1n
...

cn1 + · · ·+ cnn

 =

0
...
0

 = 0.

So, the null space of C is non-trivial, making C singular. Therefore, A is also singular.
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Before we consider the “only if” implication, we first observe that, since A is diagonally

connected, each diagonal entry of A is nonzero. So, D is invertible and we may consider

the matrix A′ = D−1A. From basic linear algebra, Corollary 1, and Lemma 7 we see that

A′ satisfies the hypotheses of this theorem exactly when A satisfies them. Furthermore,

we see that

a′ii =
1
dii

aii =
1
aii

aii = 1.

Thus, we lose no generality in assuming that D = I, the identity matrix. Now, the “only

if” implication will follow from a proof [6] of the Geršgorin Disk Theorem:

Assume that A is singular. Then we may select a nonzero vector x such that Ax = 0.

We may assume that ‖x‖∞ = 1 so that |xk| = ‖x‖∞ = 1 for some integer k. Since Ax = 0,

then Akx = 0, so that
n∑

j=1

akjxj = 0. Therefore:

|akk| = |akk||xk|

= |akkxk|

=

∣∣∣∣∣∣−
∑
j 6=k

akjxj

∣∣∣∣∣∣
≤

∑
j 6=k

|akjxj | (21)

≤
∑
j 6=k

|akj | |xj |

≤
∑
j 6=k

|akj | ‖x‖∞ (22)

=
∑
j 6=k

|akj |

≤ |akk| (23)

Since the first and last terms in the chain of inequalities are equal, the intermediate

terms must also be equal. The inequalities (21), (22) and (23) must, therefore, be equal-

ities. Equality in (22) follows if and only if |xj | = 1 whenever akj 6= 0. We conclude
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that if akj 6= 0 and |xk| = 1 then |xj | = 1. Since ajj 6= 0, we have akj 6= 0 if and only

if |akjajj | > 0. Thus, the logical statement ‘|xj | = 1’ satisfies condition (b) of Lemma

3. Therefore, |xj | = 1 whenever k A→ j. But A is diagonally connected, so k A→ j for

each j. Therefore, |xj | = 1 for each j. So, from (21), (22) and (23) we have, for each

k ∈ {1, . . . , n}:

1. |xk| = 1

2. |akk| =
∑
j 6=k

|akj |.

3.

∣∣∣∣∣∣
∑
j 6=i

aijxj

∣∣∣∣∣∣ =
∑
j 6=i

|aijxj |

We will now use these facts to show that A can be factored as A = BCB∗ as claimed.

By the triangle inequality for complex numbers,

∣∣∣∣∣∣
∑
j 6=i

aijxj

∣∣∣∣∣∣ =
∑
j 6=i

|aijxj | if and only

if there is a single (nonzero) complex number zi such that for each j 6= i there is a

non-negative real number αij such that aijxj = αijzi. We may assume, with no loss

of generality, that |zi| = 1 for each i. Define the diagonal matrices B and H by bii =

−zi and hii = xi and let C = B∗AH. We here note that by their definitions B and H are

clearly unitary. We calculate:

αij = |αij | =
|aij ||xj |
|zi|

= |aij |

So, whenever j 6= i, we have aij = αij
zi

xj
= |aij |

zi

xj
. Therefore:

cij = (B∗AH)ij = biiaijhjj = −ziaijxj = −zi|aij |
zi

xj
xj = −|aij | ≤ 0

So, the off-diagonal entries of C are all non-positive real numbers, proving claim 2. In

fact, this shows that the off-diagonal entries of C are completely determined by A. We

calculate the diagonal entries of C as follows:

cii = biiaiihii = −zixi
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Since A = BCH∗, we have BCH∗x = 0. Since B is invertible, we have (CH∗)x = 0.

But

(H∗x)i = hiixi = xixi = 1

So we have H∗x = (1, . . . , 1)T . Therefore, C(1, . . . , 1)T = 0. This gives us

0 = (Ci(1, . . . , 1)T ) =
n∑

j=1

cij = cii +
∑
j 6=i

(−|aij |) = cii −
∑
j 6=i

|aij |

which proves claim 3, as well as showing that cii =
∑
j 6=i

|aij | ≥ 0, completing the proof that

C is real. In addition, since cii = −z̄ixi, we have |cii| = |zi||xi| = 1 so that cii = 1, proving

claim 1. This also completes the proof that C is uniquely determined by A. Furthermore,

observe that C has nonzero entries in exactly the same places as A so that C is diagonally

connected. We now notice that

−zixi = cii = 1

so that zi = −xi for each i ∈ {1, . . . , n}. In particular, bii = −zi = xi = hii, so that

H = B and we have the factorization A = BCH∗ = BCB∗ as claimed.

To complete the uniqueness claim, let us assume that A = B′CB′∗ is another such

factorization. Define F = B∗B′. Then

C = B∗AB = B∗B′CB′∗B = (B∗B′)C(B∗B′)∗ = FCF ∗

Therefore, cij = fiicij f̄jj so that fii = fjj whenever cij 6= 0. More generally, by

Lemma 3 we have fii = fjj whenever i C→ j. But, C is diagonally connected, so i C→ j for

each i, j, forcing fii = fjj for each i, j. Therefore, F = αI for some scalar α such that

|α| = 1, forcing B∗B′ = αI and, therefore, B′ = αB as claimed.

Corollary 3. If A satisfies the conditions of Theorem 1 and is singular, then for each

i ∈ {1, . . . , n} we have

|aii| =
n∑

i=1

|aij |
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Proof. Since A = DBCB∗ as the theorem concludes, we find that

|aii| = |diibiiciib̄ii|

= |dii||cii|

= |dii|
n∑

j=1

|cij |

=
n∑

j=1

|dii||cij ||bii||bjj |

=
n∑

j=1

|diicijbiibjj |

=
n∑

j=1

|aij |

Corollary 4. If every connected component of A satisfies the conditions of Theorem 1

and has at least one row that is strictly diagonally dominant, then A is invertible.

Proof. By Corollary 3 every connected component of A is a square, invertible matrix.
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6 Analysis of the Model

We begin this section by pointing out that W is invertible by Corollary 4. That is,

each cell of the system is either in contact with the fluid or substrate (i.e., not entirely

surrounded by other cells) or else is connected to a cell that is not entirely surrounded

by cells. Therefore, µi > 0 for at least one i in each connected component of W , giving

us at least one row in each component that is strictly diagonally dominant. Since W is

invertible, we can conclude that V is positive definite as claimed earlier. This gives us

the information that we need to proceed with our analysis.

The system (13) of vector equations is clearly equivalent to the matrix equation

(
V A

) (
ẋ
a

)
= M. (24)

Note that AT ẋ is a vector of length
1
2
n(n−1) and that if cells h and k are interacting,

with h < k and j = j(h, k), then

(AT ẋ)j =
n∑

i=1

(Aij)T ẋi

= (xh − xk) · ẋh + (xk − xh) · ẋk

= (xh − xk) · (ẋh − ẋk).

(25)

If, on the other hand, cells h and k are not interacting then (AT ẋ)j = 0. Thus, the

condition (4) can be phrased as

AT ẋ = 0.

This is, in turn, equivalent to the matrix equation

(
AT 0

) (
ẋ
a

)
= 0. (26)

Combining (24) and (26), we find that the matrix equation that determines the motion

of our cell system is: (
V A
AT 0

) (
ẋ
a

)
=

(
M
0

)
. (27)
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This system is intended to be solved in a time-stepping manner. That is, from an

initial configuration, the coefficients µij and µi are known, as are the positions xi and

the motive forces Mi. Therefore, once we show that there is a solution, the system can

be solved for ẋ and a. The positions of the cells are then updated by moving xi in the

direction of ẋi for a small time increment and the process is repeated.

6.1 Analyzing the Matrix

Setting B =
(

V A
AT 0

)
, the system of force equations (27) is equivalent to the matrix

system:

B

(
ẋ
a

)
=

(
M
0

)
. (28)

In general, as we shall see, B is singular so that equation (28) has infinitely many

solutions
(

ẋ
a

)
. Since the end we seek is to solve for ẋ, we will show that ẋ is well-

defined and independent of the value of a. That is, different combinations of adhesion

and repulsion forces may be possible, but all yield the same motion for the system.

Suppose that two vectors
(

ẋ
a

)
and

(
ẏ
b

)
satisfy equation (28). Then

B

(
ẋ− ẏ
a− b

)
= B

[(
ẋ
a

)
−

(
ẏ
b

)]
= B

(
ẋ
a

)
−B

(
ẏ
b

)
=

(
M
0

)
−

(
M
0

)
= 0

So, the vector
(

ẋ− ẏ
a− b

)
lies in the null space of B. It behooves us, then, to examine

the null space of B. Let
(

ẋ
a

)
∈ null (B). Then

(
V A
AT 0

) (
ẋ
a

)
=

(
0
0

)
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We multiply this system on the left by the invertible matrix
(

V −1 0
AT V −1 −I

)
to get

the equivalent equation: (
I V −1 A
0 AT V −1 A

) (
ẋ
a

)
=

(
0
0

)
(29)

Decoupling equation (29), we have the system

ẋ + V −1A a = 0

AT V −1A a = 0
(30)

This means that if
(

ẋ
a

)
is any vector that satisfies (29), then AT V −1A a = 0, so that

(A a)T V −1(A a) = aT AT V −1A a

= aT (AT V −1A a)

= aT 0

= 0

Since V −1 is positive definite, it must be the case that Aa = 0, so that a is in the

null space of A. Thus, we see that all vectors in null (B) are of the form
(

0
a

)
, where

a ∈ null (A). Conversely, if a ∈ null (A) then B

(
0
a

)
= 0. We conclude, therefore, that

null (B) =

{(
0
a

) ∣∣∣∣∣ a ∈ null (A)

}
.

We now return to the question of the uniqueness of solutions to (28). Since
(

ẋ− ẏ
a− b

)
∈

null(B), we conclude that ẋ−ẏ = 0 and, therefore, ẋ = ẏ. Therefore, though equation (28)

generally has multiple solutions, the derivative portion of the solution vector is unique.

Therefore, the motion of the system of cells is uniquely determined by the equation (27).

6.2 Adhesion as a Potential

We conclude this section by showing that our assumptions and calculations do not admit

the use of potentials to model adhesion. We consider the case of two cells that are
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adhering. This gives us the following equations

µ1ẋ
1 + µ12(ẋ1 − ẋ2) = A12 + M1, (31)

µ2ẋ
2 + µ21(ẋ2 − ẋ1) = A21 + M2. (32)(

x1 − x2
) (

ẋ1 − ẋ2
)

= 0.

Subtracting µ1 times (32) from µ2 times (31) and since A12 = −A21 and µ12 = µ21

we find that

A12 =
1

µ1 + µ2
((µ1µ2 + µ12(µ1 + µ2))(ẋ1 − ẋ2)− µ2M1 + µ1M2).

Taking the inner product of each side of this equation with x̂2 − x1 and using the fact

that (x1 − x2) · (ẋ1 − ẋ2) = 0, we find that

|A12| =
1

µ1 + µ2
(µ1M2 − µ2M1) · x̂2 − x1.

In order to simplify the following calculations, we now assume that cell 1 is fixed

in space. More precisely, we adopt a (possibly) moving coordinate system, so that all

measurements are made with respect to an orthonormal basis with x1 at the origin. This

being done, we also assume that M1 = 0. For simplicity of notation in the following

calculations, we will here define M = M2 and x = x2 and let subscripts on x and M

denote vector components, with superscripts being exponents. So, we have

A12 =
(

1
µ1 + µ2

(µ1M) · x̂
)

x̂

=
(

µ1

µ1 + µ2

) (
M · x
||x||2

)
x

=
(

µ1

µ1 + µ2

) (
M1x1 + M2x2 + M3x3

x2
1 + x2

2 + x2
3

)
x

= R x

= (R x1, R x2, R x3)

where R(x) =
(

µ1

µ1 + µ2

) (
M1x1 + M2x2 + M3x3

x2
1 + x2

2 + x2
3

)
.
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Therefore, if A12 is the gradient of a potential, then for i, j = 1, 2, 3 we have

∂

∂xj
(R xi) =

∂

∂xi
(R xj)

or, equivalently,

xi
∂R

∂xj
− xj

∂R

∂xi
= 0.

However,

∂R

∂xi
=

(
µ1

µ1 + µ2

)
(x2

1 + x2
2 + x2

3) Mi − 2 xi(M1x1 + M2x2 + M3x3)
(x2

1 + x2
2 + x2

3)2
,

so that

xi
∂R

∂xj
− xj

∂R

∂xi
= xi

(
µ1

µ1 + µ2

)
(x2

1 + x2
2 + x2

3) Mj − 2 xj(M1x1 + M2x2 + M3x3)
(x2

1 + x2
2 + x2

3)2

− xj

(
µ1

µ1 + µ2

)
(x2

1 + x2
2 + x2

3) Mi − 2 xi(M1x1 + M2x2 + M3x3)
(x2

1 + x2
2 + x2

3)2

=
(

µ1

µ1 + µ2

)
Mjxi −Mixj

x2
1 + x2

2 + x2
3

.

This quantity is zero for every pair i, j if and only if M is a scalar multiple of x. But

M can be arbitrary so that, in general, A12 is not the gradient of a potential. Therefore,

in the more general n-cell case, potentials do not accurately model the affects of adhesion.
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7 Future Work

There are several avenues of further research which can be explored from where this paper

ends.

7.1 Numerical

The first task is to begin a numerical study of the model. Several questions are of interest.

The problem is to solve, in an efficient manner, the matrix equation(
V A
AT 0

) (
ẋ
a

)
=

(
M
0

)
(33)

One observation that may be helpful in studying the system numerically is that, as

discussed earlier, each cell may have no more than 12 neighbors. Therefore, A has no

more than 6n columns that are non-zero. Since some cells must be in contact with the

substrate and/or fluid, as well as any neighbors they may have, there are clearly fewer

than 6n such pairs. Thus, A has more than
1
2
n(n − 1) − 6n =

1
2
n(n − 13) columns of

zeros.

Since no more than 6 entries of each column of A may be non-zero, A has fewer than

36n nonzero entries. For similar reasons, each row of V can have no more than 13 nonzero

entries. Therefore, the total number of nonzero entries of B =
(

V A
AT 0

)
is fewer than

2(36n) + 13(3n) = 111n

By contrast, the total number of entries of B is(
3n +

1
2
n(n− 1)

)2

=
(

1
2
n(n + 5)

)2

=
1
4
n2(n + 5)2

Thus, as n gets large, the percentage of the entries of the matrix that are nonzero decreases

to zero very rapidly (order n3). Therefore, one possibility for solving the system is through

an iterative solver that is capable of taking advantage of the sparseness of the matrix B.

Of course, since most of the rows and columns of B are known to be zero, a great deal

of the sparseness may be eliminated by simply constructing from A the matrix Â with all
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columns of zeros removed. Then, rather than solving the full system (33), we solve the

system (
V Â

ÂT 0

) (
ẋ
â

)
=

(
M
0

)
(34)

where â is the vector a with the appropriate entries deleted. This new system has the

same number of nonzero entries as system (33). However, the total number of entries is

now less than

(3n + 6n)2 = (9n)2 = 81n2

Thus, system (34) is still sparse, but the total number of entries grows quadratically with

n, rather than the quartic growth of system (33).

Alternatively, Hu and Zou [7] have presented an iterative scheme for solving equations

of the form (
A B
BT 0

) (
x
y

)
=

(
f
g

)
(35)

where A ∈ Mq,q is symmetric and positive definite, and B ∈ Mq,p, with p ≤ q. Problems

of this form are common to fluid dynamics.

This is very nearly of the form we need to solve our problem. We know V to be positive

definite, but the dimensions of our matrix A do not, in general, satisfy the requirement

p ≤ q. As discussed above, A has 3n rows and
1
2
n(n − 1) columns. Thus, A is only

guaranteed to satisfy the dimension requirement if n ≤ 7. However, this is not very

helpful if we wish to model a system of n = 10, 000 cells. We can eliminate columns

of zeros as above, but that only guarantees that we have fewer than 6n columns—still

not a sufficient improvement to employ the method of Hu and Zao. However, perhaps a

modified version of their algorithm could be employed for our problem.

Another consideration in preparing a numerical solution is that the structure of V

and A may allow the system to be efficiently reduced to smaller problems. For example,

observe that if the blocks Aij and Asj are both nonzero then cells i and j are both in

contact with cell kj . Therefore, cells i and j are linked. From our results in matrix theory,

this allows us to renumber the cells so that equation (33) takes the form
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

(
V1 A1

AT
1 0

)
(

V2 A2

AT
2 0

)
. . . (

Vr Ar

AT
r 0

)





(
ẋ1

a1

)
(

ẋ2

a2

)
...(

ẋr

ar

)


=



(
M1

0

)
(

M2

0

)
...(

M r

0

)


(36)

Therefore, the system can be fully decoupled into r equations of the form(
Vi Ai

AT
i 0

) (
ẋi

ai

)
=

(
M i

0

)
where each is the portion of equation (33) that corresponds to a cluster of linked cells.

Perhaps this approach could be employed to produce more efficient results.

7.2 Structure of A

Another question of interest is in the structure of A. We showed that the null space

of B corresponds in a nice way to the null space of A—that a ∈ null(A) if and only

if
(

0
a

)
∈ null(B). This means that the adhesive forces are determined by the initial

conditions only up to elements of the null space of A. Thus, the adhesive forces are

unique if and only of the null space of A is trivial. It is not currently known if the

construction of B admits a configuration which causes A to have a non-trivial null space.

If such a configuration exists, it is worthwhile to consider what significance this has in

the physical system, but to date no such effort has been undertaken.

7.3 Relaxing constraints

In order to produce more realistic results, it is necessary to relax the constraints on the

shape of a cell, as spheres do not very well describe the shape of many cells. Initially,

deformable ellipsoids could be used. Eventually, perhaps, more general shapes could be

allowed. With these more general situations, the form of the equations of motion will be

different, and it would be interesting to see just how they are affected, and how they are

to be solved.
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In addition, there is an additional assumption that needs to be made but is not included

in the model as yet. There is a limit to how strong the adhesive force between cells may

be. If two cells pull on one another with too great a force, the bond will be broken and

the cells will move apart, so that the adhesive force is zero. Therefore, in constructing the

matrix, there is really a heaviside function, or something similar to break the bond when

the force is too great. This may require that the matrix system be solved in multiple

passes—each time dissolving any adhesions which have been broken.

7.4 Comparison with other models

Perhaps the most important aspect of a numerical analysis of the model is to compare

the results with other current models, particularly those which bear a resemblance to this

one. The Palsson-Othmer and Dallon-Othmer models would be of particular interest in

comparing models numerically.
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